transfer learning1 전이학습 (Transfer learning) 이란? 전이학습 쉬운 설명 1. 전이학습(Transfer learning)이란? 전이학습은 딥러닝에서 대량의 데이터로 이미 학습된 모델의 일부 또는 전체 파라미터(인공뉴런)를 가져와 새로운 모델 학습에 적용하는 기술입니다. 이미 학습된 모델에서 추출한 특징(feature)을 새로운 모델의 입력으로 사용하여 적은 양의 데이터로도 높은 성능을 얻을 수 있습니다. 예를 들어, 고양이 사진 분류 모델을 학습한 후, 이 모델의 일부 레이어를 새로운 분야에서 학습할 때 초기 가중치로 사용하면, 성능을 빠르게 개선할 수 있습니다. 이렇게 전이학습을 이용하면 적은 양의 데이터로도 높은 성능을 얻을 수 있으며, 모델 학습 시간과 비용을 절약할 수 있습니다. 2. 전이학습의 유래 및 역사 전이학습의 유래 및 역사는 ImageNet Large Sca.. 2023. 3. 30. 이전 1 다음 반응형