Overfitting1 과적합이란? 과적합 쉬운 설명 Overfitting 1. 과적합(Overfitting)이란? 과적합(overfitting)은 머신러닝 모델이 학습 데이터에 지나치게 최적화되어, 새로운 데이터에 대한 예측 성능이 저하되는 현상을 말합니다. 예를 들어, 학생이 시험을 준비할 때, 과거의 시험 문제(족보)만를 모두 외우는 경우를 생각해보세요. 이 학생은 과거 문제에 대해서는 정확한 답을 말할 수 있지만, 새로운 문제 유형에 대해서는 잘 대처하지 못할 것입니다. 이처럼 머신러닝 모델도 학습 데이터에만 지나치게 최적화되면, 학습에서 보지 못했던 테스트데이터에 대해서 성능이 떨어지게 됩니다. 예를 들어, 얼굴 인식 모델을 학습시키는 경우, 학습 데이터에 포함된 인물들의 얼굴 특징들만 지나치게 학습되어 새로운 인물의 얼굴을 인식하지 못하는 경우가 발생할 수 있습니다... 2023. 4. 28. 이전 1 다음 반응형