IOU1 객체검출 평가지표 AP(Average Precision)란? mAP, AP50, AP50:95, IoU 쉬운설명 1. PR curve 및 임계값이란 Precision-Recall curve (PR curve)는 인공지능모델의 분류 및 객체검출 능력을 시각화하는 방법 중 하나입니다. 이를 그리기 위해, 모델의 결과를 임계값(threshold)에 따라 분류하여 Precision과 Recall 값을 계산합니다. Precision은 모델이 예측한 것 중 실제로 맞은 비율이고, Recall은 실제값 중 모델이 예측한 비율입니다. PR curve는 임계값을 달리하였을때, Recall 값을 x축으로, Precision 값을 y축으로 표시한 곡선입니다. 임계값(threshold)은 모델이 결과를 결정하는 기준값입니다. 예를 들어, 분류에서는 모델이 예측한 확률값 (confidence score) 기준을 정해서 기준 이상인 경우만.. 2023. 5. 4. 이전 1 다음 반응형